3.18.65 \(\int \frac {1}{\sqrt {d+e x} \sqrt {d^2-e^2 x^2}} \, dx\)

Optimal. Leaf size=52 \[ -\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{\sqrt {2} \sqrt {d} \sqrt {d+e x}}\right )}{\sqrt {d} e} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {661, 208} \begin {gather*} -\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{\sqrt {2} \sqrt {d} \sqrt {d+e x}}\right )}{\sqrt {d} e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[d^2 - e^2*x^2]),x]

[Out]

-((Sqrt[2]*ArcTanh[Sqrt[d^2 - e^2*x^2]/(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x])])/(Sqrt[d]*e))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 661

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(2*c*d + e^2*x^2
), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d+e x} \sqrt {d^2-e^2 x^2}} \, dx &=(2 e) \operatorname {Subst}\left (\int \frac {1}{-2 d e^2+e^2 x^2} \, dx,x,\frac {\sqrt {d^2-e^2 x^2}}{\sqrt {d+e x}}\right )\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{\sqrt {2} \sqrt {d} \sqrt {d+e x}}\right )}{\sqrt {d} e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 52, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{\sqrt {2} \sqrt {d} \sqrt {d+e x}}\right )}{\sqrt {d} e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[d^2 - e^2*x^2]),x]

[Out]

-((Sqrt[2]*ArcTanh[Sqrt[d^2 - e^2*x^2]/(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x])])/(Sqrt[d]*e))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.11, size = 58, normalized size = 1.12 \begin {gather*} -\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {d} \sqrt {d+e x}}{\sqrt {2 d (d+e x)-(d+e x)^2}}\right )}{\sqrt {d} e} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[d + e*x]*Sqrt[d^2 - e^2*x^2]),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[2*d*(d + e*x) - (d + e*x)^2]])/(Sqrt[d]*e))

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 144, normalized size = 2.77 \begin {gather*} \left [\frac {\sqrt {2} \log \left (-\frac {e^{2} x^{2} - 2 \, d e x + 2 \, \sqrt {2} \sqrt {-e^{2} x^{2} + d^{2}} \sqrt {e x + d} \sqrt {d} - 3 \, d^{2}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{2 \, \sqrt {d} e}, -\frac {\sqrt {2} \sqrt {-\frac {1}{d}} \arctan \left (\frac {\sqrt {2} \sqrt {-e^{2} x^{2} + d^{2}} \sqrt {e x + d} d \sqrt {-\frac {1}{d}}}{e^{2} x^{2} - d^{2}}\right )}{e}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*log(-(e^2*x^2 - 2*d*e*x + 2*sqrt(2)*sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)*sqrt(d) - 3*d^2)/(e^2*x^2
+ 2*d*e*x + d^2))/(sqrt(d)*e), -sqrt(2)*sqrt(-1/d)*arctan(sqrt(2)*sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)*d*sqrt(-1
/d)/(e^2*x^2 - d^2))/e]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {-e^{2} x^{2} + d^{2}} \sqrt {e x + d}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)), x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 58, normalized size = 1.12 \begin {gather*} -\frac {\sqrt {-e^{2} x^{2}+d^{2}}\, \sqrt {2}\, \arctanh \left (\frac {\sqrt {-e x +d}\, \sqrt {2}}{2 \sqrt {d}}\right )}{\sqrt {e x +d}\, \sqrt {-e x +d}\, \sqrt {d}\, e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x)

[Out]

-1/(e*x+d)^(1/2)*(-e^2*x^2+d^2)^(1/2)/(-e*x+d)^(1/2)/e*2^(1/2)/d^(1/2)*arctanh(1/2*(-e*x+d)^(1/2)*2^(1/2)/d^(1
/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {-e^{2} x^{2} + d^{2}} \sqrt {e x + d}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{\sqrt {d^2-e^2\,x^2}\,\sqrt {d+e\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^(1/2)),x)

[Out]

int(1/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {- \left (- d + e x\right ) \left (d + e x\right )} \sqrt {d + e x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(-e**2*x**2+d**2)**(1/2),x)

[Out]

Integral(1/(sqrt(-(-d + e*x)*(d + e*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________